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Implementation of Design Sensitivity Analysis for
Nonlinear Elastic Structures
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Implementation of design sensitivity analysis into MARC, a general nonlinear finite element code, is de-
scribed. Follower forces and constraints treated via Lagrange multipliers are also included in the implementa-
tion. The sensitivity analysis is implemented in the most general way; i.e., arbitrary design criteria and design
parameters including shape, sizing, and material property variables can be defined through special user-supplied
subroutines. Local derivatives of all of the quantities needed for sensitivity analysis are calculated using the
central differences allowing a very general implementation without sacrificing the accuracy. Design sensitivities
to multiple parameters are implemented, even though an option for multiple loading does not apply to nonlinear
finite element analysis. Also, design sensitivities can be calculated at any load level, whereas the analysis
calculations march on as if there was no interruption. Derivation of design sensitivities with constraints such as
incompressibility or unilateral frictionless contact indicates that the same steps, as in the implementation of
regular displacement based nonlinear finite element method, can be followed without any modifications. A
numerical example using the modified finite element code is presented to demonstrate the new capability.

I. Introduction

D ESIGN sensitivity analysis of nonlinear elastic structures
has received much attention during recent years. Refer-

ence 1, a good overview paper, quotes most of the references
on the subject. Quite often in finite element analysis, contact
conditions or other constraints such as incompressibility may
arise. Use of the Lagrange multipliers is one of the general
approaches for treating such constraints. With this approach,
the original stiffness matrix is not modified, but it is aug-
mented by terms related to the constraints. Therefore, the
sparsity structure of the linear system to be solved is not
changed, which is a good feature of this approach. Design
sensitivity analysis of linear static and dynamic systems with
general constraints treated via Lagrange multipliers is pre-
sented in Refs. 2 and 3, whereas nonlinear elastic systems are
treated in Ref. 4. When the constraints are implemented in a
finite element code using Lagrange multipliers, the design
sensitivity calculations follow the same route as for the regular
finite element analysis without any constraints, as shown in
this paper. That is, the displacement sensitivities are obtained
by multiplying the inverse tangent stiffness matrix by partial
derivative of the unbalanced force vector. In this process,
design sensitivities of the Lagrange multipliers are also ob-
tained without extra calculations. These sensitivities may be
useful in calculation of the reaction force sensitivities, or
sensitivities of the mean pressure when incompressibility is
enforced.

Finite element analysis of nonlinear structures under large
displacement and strain conditions frequently deals with fol-
lower forces. One example of such forces is the uniformly
distributed surface pressure that is always normal to the sur-
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face while it deforms. The results on the accuracy and treat-
ment of design sensitivity analysis with follower forces are
discussed in Ref. 5. Since the load-stiffness matrix is not
calculated in MARC, a general nonlinear finite element code,
the effect of follower forces in analysis as well as sensitivity
analysis is included by implementing a user element. Some
details of that implementation are given in Ref. 5.

Design sensitivity analysis for nonlinear elastic structures
can be implemented in a general finite element code in two
different ways: inside the code by its modification or outside
the code by using restart and postprocessing of analysis re-
sults. The basic advantage of the first method is that one can
implement the design sensitivity procedures more efficiently
and tailor the code according to the current needs. It is also
less cumbersome to include the code modified in this manner
in an optimization module. The only advantage of the second
approach is that one does not have to have the source code.
The programming effort is still considerable because most of
the finite element processing routines must be developed.
Some of these issues are discussed in Refs. 6 and 7.

The purpose of the present paper is to describe implementa-
tion of design sensitivity analysis for constrained elastic sys-
tems into a general purpose program for nonlinear finite ele-
ment analysis. The implementation is done inside the code,
and the direct differentiation method is chosen over the ad-
joint method because it is relatively straightforward and easier
to implement. In this approach, sensitivities of the displace-
ments and Lagrange multipliers for the constraints are calcu-
lated first. Using these, sensitivities of any response-dependent
functional can be evaluated. In the computer implementation,
a user-supplied subroutine can be used to program sensitivity
calculation for any functional using sensitivities of the dis-
placements and the Lagrange multipliers. The adjoint method
needs a more cumbersome procedure because the adjoint vari-
able calculations are dependent on the functional whose
sensitivities are desired. If more functional need to be imple-
mented for their sensitivity calculations or if the current func-
tionals need to be modified, the implementation for the ad-
joint calculations must be updated. This can be quite
cumbersome, especially with large general purpose programs.
In the current implementation for nonlinear elastic structures,
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any type of element or a combination of them can be used,
constraints of incompressibility or unilateral contact can be
specified, and shape, sizing, or material parameters can be
used as design variables. A numerical example illustrating the
developments is presented. The design sensitivities calculated
using the developed software are compared with the ones
calculated by forward finite differences. Very good agreement
is obtained between the two calculations.

II. Design Sensitivity Analysis with Constraints
Design sensitivity analysis of constrained elastic systems was

also presented in Ref. 4 in which both direct differentiation
and adjoint methods were described. A special purpose com-
puter code was developed for both analysis and design sensi-
tivity analysis. In such a case, the implementation is fairly
straightforward since the developer can tailor both the analy-
sis and the design sensitivity analysis parts for the best results
without any consideration for implementation into a general
purpose code. In the present paper, we will discuss only the
direct differentiation method for design sensitivity analysis
and its implementation aspects since, in our opinion, it is more
amenable to implementation in a general purpose existing
computer code, as explained earlier. Therefore, we will briefly
present the direct differentiation method for design sensitivity
analysis of nonlinear elastic structures with constraints more
explicitly, as it relates to the implementation. It is important to
note that for this class of problems, history of sensitivities is
not needed to calculate sensitivities at any point of the loading
path; i.e., sensitivities at any load level can be calculated by
just solving a linear system of equation. This observation
simplifies the numerical implementation.

Nonlinear Analysis
We write a general constraint h on strains e/y- and displace-

ments M/ as

(1)

For incompressibility, h(eiJ9 uf) = 73 - 1, where 73 is the third
invariant of the metric tensor 73 = det(<5/7 + 2e//), and the in-
equality in Eq. (1) becomes equality. For contact constraint,
h(eij9Uj) = («/ — uf) - nt - d, where «/ are the components of
the outward normal to the body and d is the distance between
the body and the rigid surface. Multiplying the constraint (1)
by a virtual Lagrange multiplier d\ and adding it to a virtual
work equation, we obtain

ejj dV- f dV- f dS

(2)

where a/y are the components of the second Piola-Kirchoff
stress,/ the components of the body force, and Tt the compo-
nents of the surface traction. In Eq. (2) the Lagrange multi-
plier 5\ is 0 if /i(e/y,w/)<0, that is, if the constraint is inactive.

Equation (2) is solved using load incrementation and New-
ton-Raphson iterations. To demonstrate the relation between
finite element and sensitivity analyses we describe these pro-
cesses in more detail. Body forces fit surface tractions 7},
and/or prescribed displacements are added in increments.
Then, Eq. (2) can be written in the incremental form. In terms
of the increments of the sought quantities such as displace-
ments, strains, and stresses, the incremental equation, similar
to Ref. 8, is given as

a/7<5Ae/7

Uf dS +

(3)

where
Tk = Tk-\
-*• I •*• 1

and A/f and A7f are increments of the external forces, and
superscript k indicates the load increment number.

The nonlinear equation (3) is solved by using Newton-Raph-
son iterations, i.e., a linearized version of Eq. (3) is solved a
number of times and the residual forces are updated until the
change in the displacements or the residual forces, etc. (de-
pending on the chosen convergence criterion) satisfy the spec-
ified tolerance. Once convergence has been achieved, the
increments of the displacements, strains, and stresses are ob-
tained from Eq. (3) and the displacements, strains, and
stresses are updated. Then, external forces are incremented,
and the process continues until the specified load is reached.

Design Sensitivity Analysis
Taking variations § of Eq. (2) due to a design change, a

design sensitivity equation is obtained.

SF
&/, dF

5F
dui dV - i dS-

SS
f dS

6F
d\h(eij9 Ui) dV

(4)

The first and the last terms in Eq. (4) contribute to the tangent
stiffness matrix after finite element (FE) discretization, and all
of the other terms contribute to the right-hand side vector.
However, if follower forces are present in the analysis, the
third and fifth terms in Eq. (4) may also contribute to the
tangent stiffness matrix because the body forces and surface
tractions may depend on displacements. The integrals over
volume or surface variations can be computed analytically
using the reference volume or domain parametrization con-
cept9'11 or the concept of material derivative.12 However, since
the integrals are normally calculated by means of numerical
integration, the integral variations due to shape change must
be calculated through variations of the integration point loca-
tions. Therefore, calculation of the integral variations are
quite straightforward if the integrals are calculated numeri-
cally. This approach is followed in the present implementa-
tion. We will point out, however, that the reference volume or
domain parametrization concept is used implicitly through
isoparametric finite elements.

From Eqs. (3) and (4) it is not difficult to see that after FE
discretization, the discrete equations corresponding to Eq. (4)
and to the Newton-Raphson iterations for Eq. (3) will be

(5)
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where b is a design parameter and

where

(6)

'-[Kl
O

is a typical tangent stiffness matrix if Lagrange multipliers are
used with K\ being a regular tangent stiffness matrix in non-
linear finite element analysis without Lagrange multipliers and
H being the typical part of the tangent stiffness matrix associ-
ated with the Lagrange multipliers arising from the last term in
Eqs. (3) or (4). Also,

gG =

is the typical right-hand-side vector with Lagrange multipliers
with / - r as the typical unbalanced force for the Newton-
Raphson iterations in nonlinear finite element analysis and
with g as the typical part of the right-hand-side vector arising
from the discretization of constraints.

Looking at Eqs. (5) and (6), we conclude that design sensi-
tivity analysis procedure does not change in principle com-
pared to that with the regular finite element analysis without
constraints. All the analyst has to do is to calculate the partial
derivative of the right-hand side and use the same tangent
stiffness matrix as for analysis. However, we gain more infor-
mation since in addition to the displacement design sensitivi-
ties du/db, the design sensitivities of Lagrange multipliers
d\/db are also calculated. We note that in case of contact
problems or specified displacements, Lagrange multipliers are
the reaction forces. In this case, we obtain design sensitivities
of them without any additional cost, whereas in a regular
finite element analysis these design sensitivities would be ob-
tained through the use of the tangent stiffness matrix and the
displacement design sensitivities.

III. Implementation
Inside vs Outside Implementation

Implementation of the described design sensitivity analysis
with a general finite element analysis codes can, in principle,
follow two routes: inside the program and outside the pro-
gram. The first route means that the source code is modified,
some subroutines may be changed, some may be added, and
then the modified subroutines are compiled and linked to-
gether to produce a new executable which may have input deck
and output results different from the original code. In the
second approach, the executable is the same, both input deck
and output results stay the same (they may, however, have
different meanings), whereas design sensitivities are obtained
by modifying loading conditions at the final equilibrium stage
and using the results.

Both approaches have certain merits. The first one is more
efficient as far as the programming is concerned; since all data
bases are available, subroutines can be modified inside instead
of calling them a second time and feeding modified data, and
thus performing redundant computations. Either direct differ-
entiation or the adjoint method can be implemented. Since the
design sensitivity step is essentially a linear analysis, design
sensitivities can be calculated with respect to multiple design
parameters in a similar way to the multiple load option in the
codes designed for linear structural analysis. This procedure is
easy to implement internally in the code, although it does not
apply to nonlinear finite element analysis. This way, design
sensitivity analysis becomes extremely efficient for nonlinear
finite element computations because the computational cost
for the calculation of multiple design sensitivities will be only
a fraction of the cost of the regular finite element analysis. If

the finite difference procedure is used, each new design pa-
rameter implies an extra finite element analysis with a slightly
changed input. Besides, situations occur when loads or en-
forced displacements are applied in a certain sequence, and
design sensitivities are needed at the strain or stress level when
only some loads or enforced displacements are applied. Then,
the finite element analysis has to march on, and design sensi-
tivities are needed at a new strain or stress level, and so on.
One of the examples of such a situation is design sensitivities
of cyclic stresses or strains. Such situations are also easily
handled inside the code since a separate storage can be allo-
cated for design sensitivities. The major drawbacks of the first
method are that the source code has to be available which may
be expensive and also an investment in the human resources
capable of understanding and modifying the code has to be
made. The actual amount of additional coding is minimal
since existing subroutines can be used to perform most of the
operations needed for design sensitivity analysis. The pro-
gramming efforts of our implementation of design sensitivity
analysis into MARC can be estimated as 6 man months.

The major advantage of the second method is that it does
not require the source code. However, implementation be-
comes inefficient because all of the steps in the implementa-
tion inside the code have to be followed in the implementation
outside the code with the only difference that internal subrou-
tines cannot be modified and access to databases is not trans-
parent. In the case of the adjoint method, some programming
may be avoided, and, based on postprocessing of data and
restart capabilities, design sensitivities of the desired quantity
sometimes may be calculated.6 However, in many cases, post-
data supplied by the code may not be sufficient for the design
sensitivity calculations. An example may be the design sensi-
tivities of Cauchy stress for which displacement gradients are
needed but typically are not found in the postdata. Then,
some programming via user subroutines (if available) and
tapping into the data base is required. In addition, features
just discussed, such as design sensitivities at different stress or
strain levels, cannot be implemented outside the code unless
some awkward programming or artificial unloding is carried
out.

Implementation into MARC
Since the source code was available, based on the preceding

discussion, design sensitivity analysis was implemented in
MARC which is a general purpose commercial finite element
code specifically designed for nonlinear analysis. The subrou-
tines responsible for parsing the input deck were modified to
accommodate options related to design sensitivity analysis. To
identify design parameters, a user subroutine was provided.
Using the design sensitivity input options and the user subrou-
tine, the user can fully define the design sensitivity problem at
hand in addition to the finite element analysis problem. Iden-
tification of the design parameters through a user subroutine
provides a lot of generality but may sometimes require consid-
erable programming efforts if shape variations are considered.
However, if frequently used parameters are identified, they
may be hardwired in the code as standard input options re-
quiring, perhaps, only limited amount of data.

In the direct differentiation approach, the program does not
have to know about the user optimization criterion or con-
straint functional for sensitivity calculations. The right-hand
side for design sensitivity analysis is calculated based on the
knowledge of the unbalanced forces and the design parameter.
Then the user, based on the calculated sensitivities of the
displacements and the Lagrange multipliers, can calculate sen-
sitivities of the desired quantity. Contrary to what was just
described, in the adjoint method the program has to have
information about the user objective function and constraints,
since they are used in the calculation of the right-hand side or
adjoint loads.13

The major code development, as seen from Eq. (5), was in
calculations of the internal force partial derivative dG/db.
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The vector of the internal forces G is calculated for an ele-
ment as

G = BTSdV (7)

where B is the matrix relating the vector of incremental strain
field de to the vector of incremental nodal displacements 6*7:
be = BdU; and S is the stress vector.

To calculate dG/db one has to differentiate Eq. (7) with
respect to the design parameter either analytically or numeri-
cally. The analytical approach is more precise but in a general
purpose code requires calculations of derivatives for every
finite element type with different shape functions. This, in
fact, requires a creation of a new finite element library for
design variation analysis in addition to the regular finite ele-
ment library, therefore requiring massive programming effort.
The numerical approach, which is also called the semianalyti-
cal method, uses finite difference approximation to the partial
derivative of G. This method is less precise and may exhibit
certain numerical instabilities depending on the step size. The
intrinsic inaccuracies for the semianalytical approach in the
case of linear elastic structures were investigated in Ref. 14. It
was our experience that such instabilities occur in the case of
nonlinear elastic structures, too. However, the situation dras-
tically improves if central finite differences are employed in-
stead of forward differences. It is more expensive computa-
tionally, requiring calculation of an additional right-hand side
compared to the forward difference method, but still is a
fraction of the computational cost of nonlinear analysis as a
whole, especially when there are a large number of equilibrium
iterations. In our experience, the design sensitivity analysis
step added on an average 6% of extra CPU time to nonlinear
analysis for every design parameter. The major advantage of
the semianalytical approach is in its simplicity and uniformity
of implementation procedure for all the element types. In
addition, we note that in such implementation, it really does
not matter whether design sensitivities are calculated to shape
variations, thickness variations as in case of beams or shells,
constitutive property variations, etc. They are all handled in
the same manner by perturbing nodes, thicknesses, or material
constants and feeding the variations into the right-hand-side
calculations. Practically, however, shape variations involve
more information and more programming effort in the user
subroutine since the direction of a perturbation has to be
known and accounted for.

The partial derivative of the internal forces dG/db was
calculated according to the central difference scheme as

every load step when convergence is achieved and added to the
total stress

where 3/ is the total stress at the end of the ith load step, and
A$i is the stress increment for the ith load increment. There-
fore, to calculate perturbed total stresses S(b - Ab) and
S(b + Ab), one has to save the perturbed stresses for both
b - Ab and b + Ab at the previous load step. Stresses calcu-
lated at the element integration points and as well as the
numerical integration in Eq. (7) will be affected by the pertur-
bation of the integration point locations. Based on the au-
thors' experience and some numerical experimentation, the
choice of Ab = 0.0 1& provides very good accuracy for both
shape and nonshape sensitivity calculations. In the case of
shape variations, however, b is the dimension of the smallest
finite element that is perturbed.

In the implementation of the follower forces, we followed
the approach outlined in Ref. 5. The load-stiffness matrix
arising in the formulation was implemented through standard
four-noded isoparametric membranes applied to the faces of
the solid elements with pressure. As shown in Ref. 5, the
inclusion of the load stiffness matrix may provide a significant
accuracy improvement for certain problems. In dealing with
follower forces, when shape variations are involved, external
forces, such as pressure normal to the surface, must be per-
turbed as well, if the shape variations affect the surface on
which the force is applied. Again, as in the case of the internal
forces, analytical expressions for these gradients can be ob-
tained which look similar to the load-stiffness matrix. How-
ever, it was felt that a more universal approach, with a general
purpose finite element code, would be to do it by central
differences since it allows unrestrained generality with respect
to design parameters, considerably simplifies programming,
and yet provides very good accuracy.

Design sensitivities to multiple design parameters can be
calculated within one analysis when the desired load level is
achieved. This is implemented by performing backsubstitution
on multiple right-hand sides because the tangent stiffness ma-
trix is available in its decomposed form. Also, as already
discussed, design sensitivity analysis may be performed at
various load levels while the nonlinear finite element analysis
continues without interruption. This is accomplished by re-
storing all of the quantities like stresses, strains, and displace-
ments to their current values right after the design sensitivity
analysis is done.

BT(b + Ab)S(b + Ab) dV- BT(b - Ab)S(b - Ab) <
____________________J V(b - Afe)_________________

2Ab——————————————— (8)

where Ab is an increment of the design parameter b. It is
important to note that in the calculations in Eq. (8) the dis-
placement field is not recalculated at b — Ab or b + Ab, since
dG/db is a partial derivative with respect to b. It is seen from
Eq. (8) that when the design parameter b is perturbed by the
amount of Ab, the quantities B and S have to be recalculated
twice for b— Ab and for b + Ab. In addition, the integration
is also performed over the perturbed volumes V(b - Ab) and
V(b + Ab). Since internal force calculations according to
Eq. (7) make use of numerical integration, perturbed quanti-
ties B and S have to be recalculated at every integration point.
Calculations of the perturbed matrix B are relatively simple:
for the already obtained displacement vector, the location of
an integration point is perturbed and, according to b - Ab or
b + Ab, new B is calculated. The calculations of the perturbed
stresses S are more involved. Stresses in MARC are calculated
increment ally, i.e., stress increment is computed at the end of

As was shown in Sec. II, implementation of such features of
nonlinear analysis as hybrid incompressible elements, contact
conditions, or any constraints implemented in the code
through Lagrange multipliers does not require any additional
specific coding.

IV. Numerical Example
An example is presented to illustrate the design sensitivity

calculations with the modified code. The model, shown in
Fig. 1, consisted of two hybrid solid eight-noded isoparamet-
ric elements with three displacement degrees of freedom at
each node and with hydrostatic pressure variable constant
over the element domain; and two eight-noded shell elements
with three displacement degrees of freedom at the corner
nodes and with one rotational degree of freedom at the mid-
side nodes with the vector of rotation parallel to the element
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SHELL 1 SHELL 2

I 7 I

Fig. 1 Finite element model.

Table 3 Variation comparison with contact conditions—shell
thickness variation; Mooney-Rivlin material

Pressure
or reaction

Calculated
sensitivities

Forward
difference

sensititivites Difference,
Solid 1
Solid 2
Contact

-0.7711
-1.4773
14.9878

-0.9868
1.7019

10.2615

-0.9862
-1.7018
10.2596

0.05
0.005
0.02

Table 4 Variation comparison with contact conditions—shape
variation; Mooney-Rivlin material

Solid 1
Solid 2
Contact

Pressure
or reaction

-0.7711
-1.4773
14.9878

Calculated
sensitivities

-0.5506
-1.0295
11.6288

Forward
difference

sensititivites
-0.5506
-1.0293
11.6279

Difference, %
0.0
0.02
0.008

Table 1 Variation comparison with contact conditions—shell
thickness variation; Mooney-Rivlin material

Solid 1
Solid 2
Contact

Pressure
or reaction

-0.7711
-1.4773
14.9878

Calculated
sensitivities

-0.9868
1.7019

10.2615

Forward
difference

sensititivites
-0.9803
-1.6897
10.1933

Difference, %
0.6
0.7
0.7

Table 2 Variation comparison with contact conditions—shape
variation; Mooney-Rivlin material_________

Forward
Pressure Calculated difference

or reaction sensitivities sensititivites Difference, °
Solid 1
Solid 2
Contact

-0.7711
-1.4773
14.9878

-0.5506
-1.0295
11.6288

-0.5505
-1.0257
11.5915

0.02
0.4
0.3

side. The hydrostatic pressure variable is the Lagrange multi-
plier to enforce incompressibility.

The Mooney-Rivlin incompressible constitutive law for the
solid elements and linear isotropic Hooke's law between sec-
ond Piola-Kirchoff stress and Green- Lagrange strain were
considered. Only one term was retained in the Mooney-Rivlin
expansion for strain energy density reducing it to what is
sometimes called the Neo-Hookean law. The expression for
strain energy density W is

where C is an experimental constant; /i = 3 + 2ekk\ 73 =
+ 2e/y); and/? is the hydrostatic pressure. The constant C was
450 psi, the elastic modulus for the shells was 20,000 psi, and
the shell thickness was 0.12 in. The shell elements were placed
on top of the solids. The dimensions of the structure were
3.1 in. in the X direction, and 2.0 in. in the Y direction. The
dimension of the first solid and shell in the X direction was
1.5 in. The dimension of the second solid and shell in the X
direction was 1.6 in.

The mesh was fixed at nodes 1, 4, 5, 8, and 16. Then a rigid
frictionless plane parallel to the Z axis and equally inclined
with respect to the X and Y axes was moved in the negative X
direction until it made contact with node 9. Then it was moved
an extra 0.1 in. in the negative X direction.

Design sensitivities of the mean hydrostatic pressure for
both solid elements and the normal contact reaction force
between node 9 and the plane were calculated with respect to
the shell thickness and to shape variation in which two node
locations were perturbed. Nodes 2 and 9 were moved in the
negative Y direction proportionally to their distance from
node 1, thus perturbing the rectangular shape of the lower
solid faces into trapezoids. All of the design sensitivities were
calculated within one analysis as was described in the imple-
mentation section. The results for both design parameters
were compared with the overall forward difference results.
The comparisons are given in Tables 1 and 2, for thickness and
shape variations, respectively. In Tables 1 and 2, the first two
rows provide results for mean pressure and the last row is for
the contact force. As is clear from the tables, very good
accuracy is obtained compared to the overall finite difference
calculation.

To verify further the accuracy of the calculated sensitivities,
they were compared with the overall central difference calcula-
tions as well, and the results are given in Tables 3 and 4. It is
seen that for both shape and nonshape sensitivity calculations,
the difference between the results becomes virtually nonexis-
tent indicating that the modified MARC code provides accu-
rate sensitivity results and that the differences in the first
example (Tables 1 and 2) are due to numerical error in the
forward overall finite difference calculations.

V. Discussion and Conclusions
Implementation and procedures of design sensitivity analy-

sis of nonlinear elastic solids with constraints and follower
forces were described. Description of the procedures imple-
mented into a general purpose nonlinear finite element code
was given. In the discussion about the two ways of implemen-
tation of design sensitivity analysis into a general finite ele-
ment code, it was concluded that if the source code is available
it is worthwhile to build the design sensitivity analysis inside
the code. It is clear from the current implementation that one
of the most general and easy ways to implement design sensi-
tivity analysis into a general finite element code without sacri-
ficing accuracy is to use a semianalytical method that uses the
central difference scheme.

Derivation of design sensitivities with constraints, such as
incompressibility or unilateral frictionless contact imple-
mented through Lagrange multipliers, indicated that the same
steps as in implementation of a regular displacement-based
nonlinear finite element method need to be followed without
any modifications. However, if Lagrange multipliers are em-
ployed, additional information, i.e., design sensitivities of the
Lagrange multipliers, is obtained without any additional com-
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putational cost. This information may be used, for example,
in calculation of design sensitivities of the reaction force.

A numerical example illustrating use of design sensitivity
analysis with incompressible material and contact conditions
implemented via Lagrange multipliers is given. In this exam-
ple, design sensitivities of hydrostatic pressure and normal
contact force were calculated to both thickness and shape
variations within one analysis. The results compared very well
with finite difference solutions.

The following conclusions are drawn from the present
study:

1) Implementation of sensitivity analysis for constrained
nonlinear problems follows the same route as for uncon-
strained problems.

2) Implementation of sensitivity analysis inside the code is
preferred if the source code is available.

3) The semianalytical method is preferred for sensitivity
implementation in a general finite element code.

4) Very good accuracy in sensitivity calculations can be
achieved.
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